Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 15(5): e0231577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380516

RESUMO

Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645-6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.


Assuntos
Migração Animal/fisiologia , Comunicações Via Satélite/estatística & dados numéricos , Estações do Ano , Telemetria/métodos , Baleias/fisiologia , Animais , Austrália , Modelos Estatísticos , Nova Zelândia
3.
Photochem Photobiol ; 93(5): 1312-1319, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425091

RESUMO

Bioluminescence is produced by a broad range of organisms for defense, predation or communication purposes. Southern elephant seal (SES) vision is adapted to low-intensity light with a peak sensitivity, matching the wavelength emitted by myctophid species, one of the main preys of female SES. A total of 11 satellite-tracked female SESs were equipped with a time-depth-light 3D accelerometer (TDR10-X) to assess whether bioluminescence could be used by SESs to locate their prey. Firstly, we demonstrated experimentally that the TDR10-X light sensor was sensitive enough to detect natural bioluminescence; however, we highlighted a low-distance detection of the sensor. Then, we linked the number of prey capture attempts (PCAs), assessed from accelerometer data, with the number of detected bioluminescence events. PCA was positively related to bioluminescence, which provides strong support that bioluminescence is involved in predator-prey interactions for these species. However, the limitations of the sensor did not allow us to discern whether bioluminescence (i) provided remote indication of the biological richness of the area to SES, (ii) was emitted as a mechanic reaction or (iii) was emitted as a defense mechanism in response to SES behavior.


Assuntos
Mergulho , Comportamento Alimentar , Luz , Medições Luminescentes/instrumentação , Comportamento Predatório , Focas Verdadeiras/fisiologia , Água do Mar , Acelerometria , Animais , Técnicas Biossensoriais , Feminino , Reprodutibilidade dos Testes
4.
PLoS One ; 12(3): e0173797, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355282

RESUMO

In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.


Assuntos
Comportamento Alimentar/fisiologia , Otárias/fisiologia , Modelos Estatísticos , Comportamento Predatório/fisiologia , Reprodução/fisiologia , Animais , Animais Recém-Nascidos , Animais Lactentes/fisiologia , Regiões Antárticas , Mudança Climática , Ecossistema , Feminino , Oceanos e Mares
5.
Sci Rep ; 7: 43236, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233791

RESUMO

Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.


Assuntos
Mudança Climática , Camada de Gelo , Oceanos e Mares , Comportamento Predatório , Focas Verdadeiras/fisiologia , Focas Verdadeiras/psicologia , Animais , Regiões Antárticas , Comportamento Animal , Comportamento Alimentar , Feminino , Masculino , Vento
6.
Biol Lett ; 12(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27555651

RESUMO

It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large.


Assuntos
Elapidae , Animais , Oceanos e Mares
7.
PLoS One ; 10(7): e0132681, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200780

RESUMO

The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.


Assuntos
Análise da Demanda Biológica de Oxigênio/instrumentação , Biologia Marinha/métodos , Focas Verdadeiras/fisiologia , Animais , Análise da Demanda Biológica de Oxigênio/métodos , Feminino , Biologia Marinha/instrumentação , Oceanos e Mares , Projetos Piloto
8.
J Exp Biol ; 217(Pt 14): 2609-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803471

RESUMO

Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration.


Assuntos
Comportamento Animal/fisiologia , Composição Corporal , Mergulho/fisiologia , Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Oceanos e Mares , Telemetria
9.
PLoS One ; 7(8): e43565, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952706

RESUMO

How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES's main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments.


Assuntos
Mergulho , Comportamento Predatório , Aceleração , Algoritmos , Animais , Escuridão , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Peixes , Luz , Luminescência , Movimento , Oceanos e Mares , Focas Verdadeiras , Fatores de Tempo
10.
J Anim Ecol ; 77(5): 948-57, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18513336

RESUMO

1. Identifying the spatial scales at which top marine predators forage is important for understanding oceanic ecosystems. Several methods quantify how individuals concentrate their search effort along a given path. Among these, First-Passage Time (FPT) analysis is particularly useful to identify transitions in movement patterns (e.g. between searching and feeding). This method has mainly been applied to terrestrial animals or flying seabirds that have little or no vertical component to their foraging, so we examined the differences between classic FPT and a modification of this approach using the time spent at the bottom of a dive for characterizing the foraging activity of a diving predator: the southern elephant seal. 2. Satellite relayed data loggers were deployed on 20 individuals during three successive summers at the Kerguelen Islands, providing a total of 72 978 dives from eight juvenile males and nine adult females. 3. Spatial scales identified using the time spent at the bottom of a dive ( = 68.2 +/- 42.1 km) were smaller than those obtained by the classic FPT analysis ( = 104.7 +/- 67.3 km). Moreover, foraging areas identified using the new approach clearly overlapped areas where individuals increased their body condition, indicating that it accurately reflected the foraging activity of the seals. 4. These results suggest that incorporating the vertical dimension into FPT provides a different result to the surface path alone. Close to the Antarctic continent, within the pack-ice, sinuosity of the path could be explained by a high sea-ice concentration (restricting elephant seal movements), and was not necessarily related to foraging activity. 5. Our approach distinguished between actual foraging activity and changes in behaviour induced by the physical environment like sea ice, and could be applied to other diving predators. Inclusion of diving parameters appears to be essential to identify the spatial scale of foraging areas of diving animals.


Assuntos
Comportamento Apetitivo/fisiologia , Ecologia/métodos , Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Feminino , Oceano Índico , Masculino , Telemetria , Fatores de Tempo
11.
Philos Trans R Soc Lond B Biol Sci ; 362(1487): 2169-81, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17472917

RESUMO

Southern elephant seals, Mirounga leonina, undertake large-scale oceanic movements to access favourable foraging areas. Successful foraging areas of elephant seals from the Kerguelen Islands are investigated here in relation to oceanographic parameters. Movements and diving activity of the seals as well as oceanographic data were collected through a new generation of satellite relayed devices measuring and transmitting locations, pressure, temperature and salinity. For the first time, we have associated foraging behaviour, determined by high increased sinuosity in tracks, and dive density (i.e. number of dives performed per kilometre covered), and changes in body condition, determined by variations in drift rate obtained from drift dives, to identify the oceanographic conditions of successful foraging zones for this species. Two main sectors, one close to the Antarctic continent and the other along the Polar Front (PF), where both foraging activity and body condition increase, seem to be of particular interest for the seals. Within these regions, some seals tended to focus their foraging activity on zones with particular temperature signatures. Along the Antarctic continent, some seals targeted colder waters on the sea bottom during benthic dives, while at the PF the favourable zones tended to be warmer. The possible negative effect of colder waters in Antarctic on the swimming performances of potential fish or squid prey could explain the behaviour of elephant seals in these zones, while warmer waters within the PF could correspond to the optimal conditions for potential myctophid prey of elephant seals.


Assuntos
Comportamento Predatório/fisiologia , Focas Verdadeiras/fisiologia , Temperatura , Animais , Regiões Antárticas , Constituição Corporal/fisiologia , Feminino , Geografia , Masculino , Oceanos e Mares , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...